
TN 6: THE ACCURACY OF ESTIMATES OF PARTICIPATION AND FREQUENCY
OF PARTICIPATION USING ANALYSIS OF VARIANCE MODELS
By J. Beaman and M. Alvo

PROLOGUE
The 1976 version of this article included a lot of material relevant to that time period.

Such material has been dropped. The article while presenting the same ideas as the original
article gives information relevant to 2006. This is done without any consideration of the
appropriateness in 2006 of using a methodology that was proposed in the early 70s.

ABSTRACT
The purpose of this paper is to present general expressions for the statistical error to be

expected when making predictions of frequency/amount of participation and of numbers of
participants in recreational activities using linear regression models (in CORDS also called
analysis of variance, ANOVA, models) and to present survey planning and secondary analysis
implications of having estimate reliability formulae.

When a multivariate regression model is developed on the basis of statements made by
individuals about participating or about how much they participate in certain activities (see TN
12), it is reasonable to consider using the model in various ways. One predicts results by
multiplying regression coefficients by “constants” and summing these products. Results on the
variability that is to be expected in estimates is presented in equation form. Model structure
being a good approximation to reality is discussed as (1) affecting the value of estimates and (2)
making variance estimates more than a fiction created using statistical models where they do not
apply. How variability in an estimate can be used to consider what reliability can be expected in
a similar survey of a different size is considered. An example is presented based on total number
of male participants in hunting that can be expected in Quebec.

The value of using model estimation t get desirable variability for forecasting and for
estimation of participation for areas for which survey results (a) are not available or (b) are too
variable to be useful (e.g., because of small sample size) is considered. How to make variability
computations is describe, in particular guidance is given on getting information need in variance
estimation using statistical programs available in 2006.
PURPOSE

One purpose of this note is to show how the reliability of estimates made using a
regression model can be assessed, given the model used can be accepted as being structurally
sound (being a good approximation to reality) . Another purpose is addressing application of the
method in terms of it being likely to produce valid and useful variability estimates.
INTRODUCTION

One of the models used as part of the CORDS can be expressed in a simple forms (see
e.g. TN 12 Equation 1, Form 1). Equation 1a is a verbal version of Equation 1b.
Equation 1A:
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Equation 1B: Yri=μ+β1,J+β2,K+β3,L+β4,M+β5,Q+εr

WHERE i is the person being considered;
Yr= the probability or frequency of a respondent, r, participating in a particular activity (for

estimation of participation Y(r)=1 is participated and =0 is did not);
μ= the constant for a particular activity (general mean)
1, 2, 3, 4 and 5 refer to 5 variables but there could be Vn n>0 each with mn >1 levels
J, K, L, M and Q are valid level for variables 1 to 5 respectively (Here level values are treated

as categorical).
β1,J, β5,Q, etc. = the beta/regression coefficients that apply to each category that defines the

socio-economic status of a person being considered.

Values of “β” coefficients that were estimated for hunting are shown in Figure l. For
some detail on how to interpret and use the coefficients, one may refer to TN 12. In summary,
one obtains a probability or “amount” by summing coefficients that apply to a person. For
participation in hunting for a person of moderate income one sees from the figure that effects of
about 0.07 would be added for income and age. If one had the graph for females one would see
the patterns of effects tend to be much smaller, as is the general mean,μ. This implies that you
cannot just get the probability for females by a gender adjustment to the probability for a male
with similar attributes. A model only including effects for “individual” variables is referred to as
using a main effects model. When one has, e.g., age effects by gender (an effects showing how
men and women differ by age in participation), one refers to using a model with interaction
effects.

\The best known use of the kind of “effects” model just introduced (pre 1970) was an
application by Mueller and Gurin (1961). It was originally recommended that the model be
applied in the CORDS by Hendry (1969). Subsequently TN 12 was prepared. As well, two works
involving its use have been prepared in Quebec (Renoux 1973, 1975).

What is important to this research report is recognizing that equations given in TN 12 for
making predictions (see Equations 2, 3 and 4) can be described as what statisticians call
estimable functions. Here all that matters is that, based on estimates made using a model like the
one expressed in Equation 1, one makes an estimates by multiplying coefficients by sizes of
populations to which the coefficients apply. This combination gives an estimate of “total amount
of participation” or of total participants. Equation 2 is the equation for expected number of
participants or amount of participation for a population of size N with nv,c “net” people in
categories defined by levels c of variables v.
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WHERE the sums are over levels, c, of variables, v, for m variables each with l(v) levels.
Ê(TA)= expected number of participants or amount/frequency of participation in a particular

activity, A, by a population
̂= the general mean for A
N = the total size of the population of concern

cv , = the effect of being in a category x of a socio-economic variable v (for A)

cvn , = the “net” numbers of people in the population to whom cv , applies (“net” refers to the
need in some regressions to consider people in an “omitted” level of a variable).



Figure 1: Relationship Between Participation/Non-Participation In Hunting And Selected
Socio-Economic Characteristics (For Males)

THEORY REGARDING MEASURING ERROR/RELIABILITY
In words Equation 2 states that if you have estimated regression coefficients ( ̂and cv, )

for participation or “amount” then to get an estimate Ê(TA) of participation or amount for a
particular population (e.g. numbers hunting or days/trips hunting by Quebec males), you
multiply the population size by the estimated overall mean ( ̂) and then for each category
considered in the model perform a similar operation ( cvcvn ,,  ). Finally, you add up the results.
Justification for doing this is in TN 12. In that note, as in the figure, there is the implicit
assumption that coefficients applying to levels of a variable sum to zero. That is that they have
been obtained in such a way that sets of regression coefficients that apply to levels of a variable
(or combinations for interactions) meet certain constraints (see constraints and the “H” matrix in
Scheffe 1959, pp. 15-19). The ways coefficients are often computed (e.g., leaving out one level
and declaring presence or absence of a level, including the missing one, by dummy variables



having particular values) affects how one computes variability in Ê(TA) Regardless, the general
idea that matters is that you are adding an effect the number of times that there are people that it
applies to.

Independent of details about estimation of the model used, a critical assumption is that
the model used is a good approximation to reality. Therefore, if combinations of levels of
variables affecting behaviour need to be considered (e.g., combinations of gender and age) then
interaction effect regression coefficients must appear (e.g., 2,2;1,1 cvcv ). One could consider
combinations of levels of v1 (e.g., gender) and v2.(e.g., age). In doing this for gender and age
you would need to know population sizes such as the numbers of males and females in each age
group ( 2,2;1,1 cvcvn ). In this article’s Appendix, we clarify what population figures would be used
with regression coefficients estimated in a particular way using two modern (in use in 2006)
regression programs.

Since here one is always considering a sum of products of regression coefficients and
population/subpopulation sizes, to make this presentation as simple as possible to understand,
Equation 2 is rewritten as Equation 3. In Equation 3 one sees a single sum in which regression
coefficients are multiplied by population/subpopulation sizes. Again, specific information on
how a regression estimation is made determines how dv and ndv .

The form of Equation 3 makes it clear that this paper does not pursue regression using
continuous variables (e.g., y=constant+coefficient*age or *income). This is because for such
regression, in formal mathematical/statistical terms, zero people are associated with a particular
value of a variable. The continuous variable formulation implies that a variable, such as age or
income, takes on an infinite number of values all of which are considered to be possible
responses. Therefore, a finite number of people is only associated with an interval. For example,
zero people are associated with $100.00 while a number is associated with dollars, d, in $100-
x<d<$100+x where x>0.
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WHERE the sum is over ̂= 0̂ and the m other regression coefficients dv̂

Ê(TA)= expected number of participants or amount of participation in a particular activity, A
dvn = the numbers of people in the populations to whom dv̂ applies

One purpose in using Equation 3 is that it facilitates introducing the matrix formulation of
least squares regression. Equation 4 expresses Equation 3 using a vector/matrix notation. For
those who are not familiar with matrix equations, while presenting results using them, we
interpret these results so all readers should understand what the equations mean/imply. In this
regard, Equation 4 is just a compact way of writing the sum expressed in Equation 3.
(4) Ê(TA)= ̂n

where n is the 1xn matrix (vector) of population “sizes” and ̂is the mx1 matrix
(vector) of parameter estimates.

The “'” symbol is read as “transpose.” When one writes n' it refers to the horizontal
vector or 1xm (read 1 by m) matrix (n1 , n2 , nm-1 , nm). Without the transpose the vector/matrix n
is vertical (m rows and 1 column). Matrix multiplication involves multiplying corresponding
elements in rows and columns (e.g. n1β1, n2β2 etc.) and adding up these products. That is how
you get the sum shown in Equation 3.



Returning to more mundane matters, in this paper a point is made of using Ê(TA) and
referring to estimating the expected number participating or to the total participation in “activity”
A as Ê(TA). In using a sum of population sizes multiplied by estimated coefficients ( dv̂ rather
than “exact ones”, dv ), one can take as given that one is using a regression model similar to the
one in Equation 1b to determine regression coefficients and then using the coefficients
determined to make an estimate, Ê(TA). Therefore, what one gets is estimated “expected”
participation given survey results. For any number of reasons (Expo 67 year, storms, floods or
Olympic Games), actual participation in a given geographic area in a given year could vary from
what on average is expected . Here we are just concerned with “random” statistical variability. In
that regard, given there is nothing exceptional about the year of a survey, the expected value
which is predicted using a model can be more appropriate for planning or policy than
observations that reflect circumstances peculiar to a given place in a particular year. Regardless,
the main point is that Ê(TA) is an estimate based on estimated values of regression coefficients.
Therefore, it is subject to statistical variability because the coefficients are. One can think of the
amount of variability in Ê(TA) reflecting the values that would arise if dv̂ were determined by
one survey, then another and another. Here this variability is measured as variance, Var(Ê(TA).
Var(Ê(TA) is by definition the average squared deviation of Ê(TA) from its overall “average”
value E(TA), average of (Ê(TA)-E(TA))2 .

Moving back to estimating variability, one is concerned with how Ê(TA)varies around
E(TA). Here we are specifically concerned with the expected/average value of
Var(Ê(TA))=E(Ê(TA)-E(TA))2. E( ) is read expected value of. Now, a person might think from
their statistics class(es) that he/she can take standard deviations in dv̂ values, Std( dv̂ ) (see
Tables 2 and 4 of TN 12), and estimate Var(Ê(TA)) as indicated in Equation 5. Equation 5 is
based on the variance of a sum of independent random variables, Xi, times constants, C i, being
the sum of the variances in those random variables(Var(Xi)=(Std(Xi))2)=σX(i)

2 multiplied by the
squares of the constants, C i

2. However, in general, the dv̂ obtained in a regression are
correlated. Therefore, one must take that correlation into account in estimating Var(Ê(TA)). This
is done by considering the covariance between regression coefficients.

LetΣβbe the matrix/array of covariances, )̂,̂( knCov  , between regression coefficients.

As indicated in Equation 6, in a covariance matrix at row n and column n one finds )̂( nVar 

while for n≠k one finds )̂,̂( knCov  in row n and column k and also in column k and row n .
Given that the regression coefficients are uniquely determined (for practical purposes the
regression “works” in getting dv̂ ),Σβexists. Furthermore, its inverse 1 exists.

You can think of the inverse matrix, 1 , as allowing one to correct for large variances by
“normalizing” all variances to 1 much as you would divide values of a variable by the variable’s
standard deviation to create a variable with a standard deviation of 1. However, as well as
compensating for differing variability in different coefficients, the matrix contains information
necessary to compensate for covariance between regression coefficients. Statistical theory leads
to Equation 6 as the correct way to determine ))(̂( ATEVar . The matrix equation is just specifying
that one must multiply 1 by the vector of population values. One sees that one multiplies both

from the right and from the left. If 1 was a diagonal matrix (0 for n≠k) with 1/ )̂( nVar  on the



diagonal, the multiplication would result in the sum given in Equation 5. Multiplication of a 1xm
matrix by a mxm by a mx1 yields a 1x1 matrix which is just a number/scalar (e.g., ))(̂( ATEVar ).

Equation 5: )ˆ())(̂(
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It is important to note that the value of ))(̂( ATEVar being near “the correct” variability in
TA depends (1) on the model estimated being structurally appropriate to the data used in
estimating regression coefficients and (2) the survey responses being unbiased (e.g., responses
not being systematically low because of partial recall). We use “the correct” because there are at
least two correctness issues. A model can be appropriate for biased responses (e.g. systematically
low) and thus ))(̂( ATEVar is correct with respects to )(̂ ATE but not the actual correct value, say

)( ATC . E(TA) and )( ATC differ by the bias, BA. If the model is not appropriate for the data, the

))(̂( ATEVar determined is “mathematically correct” but not meaningful because if the model
does not really explain the data, estimated values have a somewhat to totally spurious relation to
correct values (to what people actually do). In practical terms, given the model comes close to
predicting what people do, one can have confidence in using ))(̂( ATEVar . If the model is not
appropriate to the data, then the mathematics of computing variability and making predictions is
just playing with numbers.

The matter of “goodness of approximation” is taken up in CORD Study TN 20. Actually,
the conclusion reached there is that a simple main effect model, a model in which e.g. gender,
age and other effects are computed without recognizing that there are interactions between these,
can be expected to be a poor approximation to reality when one knows there are interactions such
as when an activity is male oriented (e.g. hunting with interaction effects as described above).
Again, one introduces interaction effects so there are regression coefficients that e.g. allow for
age specific difference in hunting participation between males and females. Equation 6 applies
when there are interaction and when there are not. The modeler has the problem of getting the
model right.
VARIABILITY IN Ê(TA), RELIABILITY AND BIAS

Using terminology and notation that is used in many statistical applications, Equation 6
results in one knowing the standard deviation s= ))(̂( ATEVar 1/2 of Ê(TA). Now, sometimes by
chance Ê(TA) will be very close to E(TA), its average over many independent surveys
administered in the same way. Other times, simply by chance, there may be a quite substantial
difference between Ê(TA) and E(TA). The size of s conveys information about how likely
deviations of a given size are.

The common way of expressing variability in estimates is to give a probability that the



estimate is within a certain range. Symbolically, Equation 8 expresses the idea of Ê(TA) differing
from E(TA) by more than d having a probability less than p. A common expression is that for a
normal distribution P(|x-μ|>1.96σ)<.95. Because theory and practice has provided justification, it
is common to assume that Ê(TA) is roughly normally distributed about E(TA) with standard
deviation s. When normality is accepted probabilities can be based on the normal distribution.
Regardless, of whether one assumes normality, one can use expressions like Equation 8 to
express desired or actual “reliability”.
Equation 8: P(|Ê(TA)-E(TA)|<d)>p where d>0 and p is a probability (e.g. .95 or 95%).

In relation to Equation 8 and “reliability” statements, we are not mentioning accuracy
because how near E(TA) is to C(TA) is generally not known. As mentioned earlier, even if a
model is structurally appropriate for data, being accurate depends on responses not being biased:
From a sample survey we do know either E(TA) or C(TA). Therefore, we do not know BA=E(TA)-
C(TA). Determining bias in estimates based on statements about behaviour, survey responses, is
not generally a trivial matter. To pursue this briefly, for hunting we may be able to verify that the
number estimated to purchase a particular hunting license corresponds, or does not, to the
number of those licenses sold. However, people may hunt with different licenses. Some people
may have one license while other people have several. Therefore, even given a license is
required for any hunting, one cannot “audit” survey estimates of number of hunters against
license sales, other than to check that the number of people saying they hunt does not exceed
sales of required licenses. Such a check does not allow determining bias though it could establish
that there is bias.

To continue from this point, consider that the interval around Ê(TA) defined in P(|Ê(TA)-
E(TA)|<d)>p is clearly a function of the degree of confidence chosen, p, as well as of the
variability of the estimate. In that regard, Equation 9 is just Equation 8 with d replaced by cs, a
constant times the estimated standard deviation of Ê(TA). Now, think about s being determined
from a survey of size n. Given how s varies with sample size, Equation 10 express how to
compute s2 , if one obtains s1 in a survey of size n1 and wants to know the expected size of s2 in a
another very similar survey of size n2. Of more importance is that one can, for example, use the
results from a survey to determine how large a survey must be to achieve a given reliability. We
provide an example of this below.
Equation 9: P(|Ê(TA)-E(TA)|<cs)>p
Equation 10: s2=(n1/n2)1/2s1

Prior to moving on to making estimates for Quebec male hunters, it is important to
recognize that when s is determined, you may know something good or bad. Given the model is
an adequate approximation to reality, if s is, say, 50% Ê(TA) (50%=100*s/Ê(TA) ), your results
are so much in error as to be useless. For example there is about a 2.5% chance that E(TA) is zero
and a 2.5% chance it is greater than 2Ê(TA). Based on Equation 10, you would need a survey 25
times as large (n2/n1) to get an “s2” that is 10% of Ê(TA). Then, given that P(|Ê(TA)-
E(TA)|<1.96s2)>95%, you would have a 95% chance that Ê(TA) was within about 20% of E(TA).

From a practical perspective, it is worth noting that desired reliability has been discussed
in terms of how s, or a multiple of it relates to a prediction. People tend to use criteria like “I
want it within 10%.” Given such a statement the analyst requires a feeling as to whether
“needing it within” refers to that close 90% of the time, 95% or if some other p is appropriate. In
this regard, when you do not yet have a prediction it can be important to consider its likely
magnitude and select “acceptable error” as a percent of this. Pulling a number out of the air like
75 that turns out to be 25% of Ê(TA) would mean you would be starting out to ge estimates that



are too variable to be useful. Unless you go into data collection with information allowing
determination of sample size, for all your effort you may come out with data that yields
unacceptably poor predictions. Proper planning is critical to getting adequately reliable
predictions. Another matter in which sample size matters is deciding whether secondary data
available for analysis has an adequate sample size to be worth using. Given one survey, Equation
10 provides the basis for making a decision. So, you can view this paper as about more than
measuring reliability after data are collected.
A QUEBEC EXAMPLE

Suppose that the amount of participation in hunting by the male population of Quebec is
to be predicted for the year 1975. Let the survey data used to estimate regression coefficients be
the 1972 CORDS National Survey on Canadians' participation in outdoor activities (documented
in CORDS Volume III). The income, urbanization and age categories used in a regression model
are given in Table 1. You can view this analysis as providing an alternative to trying to base
estimates for Quebec male hunting on tabulations made just using the data for males in Quebec.
We consider variability for such sampling below.

The idea in using a model would be to get a smaller “s” because the model is based on
data for 3000 respondents. Only participated or not is considered (1) because it is adequate to
illustrate the matter of concern and (2) because using a very simple frequency model would in all
likelihood be setting a bad example for such modelling (see specifically Cicchetti 1973, pp 33-
38; also TN 29).

Table 1 actually provides the estimates of the regression coefficients and the population
size values needed to estimate the number of male hunters in Quebec in 1975. There, one also
sees a column containing the products of population with regression coefficients. When results in
that column are added, you get Ê(TA), as indicated by the last line of the table. In summary, you
see that from 1,980,000 males 16+ it is estimated that there are 803,000 hunters.

TABLE 1: INFORMATION OF RELEVANCE IN ESTIMATING NUMBERS OF MALE
PARTICIPANTS IN HUNTING IN 1975*

Population by attribute Symbol
for ndv

1000's βdv
apply to βdv Value ndvβdv

MalePopulation
16+
Income
(1) 0-$5,999
(2)$6k-$10,499
(3) $10,500+
Urbanization
(1) 100,000+
(2) 10k-99,999
(3) rural-9,999
Age
(1) 18-24
(2) 25-34
(3) 35-49
(4) 50+

N

n(1,1)
n(1,2)
n(1,3)

n(2,1)
n(2,2)
n(2,3)

n(3,1)
n(3,2)
n(3,3)
n(3,3)

1,980

685
810
485

1,093
333
554

398
448
553
581

β0=μ

β1,1
β1,2
β1,3

β1,1

β1,2
β1,3

β1,3

β1,1
β1,2
β1,3

.438

-.076
.050
.027
-.154

.056
-.001

.083

.063

.008
-.154

867.

52.
40.
13.

-59.
18.
-1.

33.
28.
4.

-89.
TOTAL( Ê(TA) ) 803.



By carrying out estimation of s based on Equation 7 one determines that it is about 28. In
percentage terms this is about 3.5% of estimated participation (=100*28/803). Therefore, in
percentage terms, % error in hunting participation at the .05 level (p=.95) has a range of about
6.6% (= (1.96) (27.6) (100)/ 803). In other words, (1) given that the model is a reasonable
approximation to reality, (2) given that the forecast of population to 1975 is perfectly accurate,
and (3) given no exceptional circumstances associated with the survey year(1972) or 1975, one
is 95% sure that the number of male hunters in Quebec in 1975 was between 750,000 and
850,000.
DISCUSSION

Now, one may wonder why one did not just use Quebec data from the “all Canada” survey
to determine Ê(TA). Well, the sample for the survey was about 3000 of which about 1500 were
males. This is important because the regression was just run on data for males. If one was just
going to use data for Quebec males for tabulations, there were about 400 Quebec males. Based
on statistical theory, the expected variance in the proportion is about p(1-p)/400 where p is set to
0.4. Thus, one obtains an estimated standard deviation of about .025 (≈(.4*(1-.4)/400)1/2). As a
percent of the 0.4 this is about 6% (=100*.025/.4). By using the Canada sample which is about 4
times as large and making some assumptions, we got 3.5%. Thus by modelling one has obtained
an estimate that is “twice as reliable” as expected from using the Quebec data. This result is
exactly what would be expected based on Equation 10 (standard deviation in half when the
sample is quadrupled). However, if there are differences in hunting participation between
Quebec and the rest of Canada that are not accounted for by the model, this “more reliable”
estimated could be found to be significantly different from the correct hunting participation for
Quebec. We do not pursue this matter (but, analysis can be carried out since the 1972 data in
SPSS format are still available from the University of Waterloo as of 2006-see contact
information in the CORDS web posting).

We have not yet commented specifically on regression results. The R2 for the regression
was just .084. However, the F=216.5 with 7 and 1263 degrees of freedom has probability less
than .001. The regression only being for 1271 respondents (7+1263+1) is a consequence of
missing data. Since socio-economic variables are used in the model and only hunted or not
would not be needed in using data on Quebec males to get a proportion, one sees that missing
data influences results. However, if you were going to forecast a 1972 survey result to 1975
using Quebec data, you would need a method and it might require you know some socio-
economic attributes of Quebec males. TN 36 pursues the matter of the meaning of R2 in
regression models such as Equation 1. Obviously, coefficients do not contribute much to
explaining variability for participation but even making a 4% or 5% correction can matter.

From the example you may have noted that for participation estimation, when R2 is low
one can estimate var(Ê(TA)) adequately without dealing with covariance matrices. We could just
use the “p(1-p)/n” formula. Unfortunately no such very simple “trick” applies when one is
estimating amount of participation. Also, the “trick” does not apply when estimates are for
segments for which effects (βdv) result in a “p” for the segment that is quite different than the one
for the population.

In summary, results show clear advantages of making estimates using models when one is
relatively sure the model approximates behaviour by the population of concern. One is making
big reliability gains by being able to transfer reliability achieved by having a large sample to
estimates made for a smaller population. However, it has already been noted that problems can
be found with some of the simple CORDS models developed. Highly significant F-values and



patterns of coefficients that clearly make sense (Figure 1 and Figures in TN 12) can occur when
supply and interaction effects are not being considered or not being properly considered. One can
see TN 20 and TN 29 regarding interaction effects and supply effects. If models with higher R2

can be developed and one has real confidence that these capture most effects influencing
behaviour, modelling will be a really useful too. In as much as regression models are used, this
variability research will then be very important because it addresses appropriate measurement of
reliability of estimates.

Moving to a rather more technical matter, in the original version of this paper a reason for
introducing estimation for participate or not was to illustrate making one round of computations
to get preliminary estimates of probabilities of participation for respondents. A respondent’s
probability, pr, then was taken as an estimate in their variability in responding. Based on the
binomial distribution, if 1 indicates participation and 0 is “not”, sometimes we will observe 1 and
sometimes zero. The variance associated with 0-1 responses for respondent r is taken to be pr(1-
pr). This is the variability expressed by εr in Equation 1b (variance that should be taken into
account in estimating regression coefficients). Different observations having different variability
is known as heteroscedasticity. A useful consequence of weighting is that if some pr are
estimated to be negative or greater than 1 weighting can be used to move them back to valid
values. Since observations get a weight 1/(pr(1-pr) ) “resetting” p r that are outside 0-1 near
enough to zero or 1 gives them enough “influence” so revised estimates are within 0-1. However,
the need to set high weights to force many estimates into the 0-1 range can be an indication that
an invalid model is being used. One can find further comment and references in the Smith and
Cicchetti “Appendix A” .We do not pursue this matter further since in 2006, one might well use
a logistic model rather than a weighted least squares model to estimate participation/non
participation (e.g. see SPSS manuals [base and Advance Statistics] or the SAS Stat manual for
examples and references on logistic models and weighted least squares regression. See TN 19 for
a non “pr” application of weighted least squares regression).

In the end of the review material for Chapter VII of this volume there is a brief
introduction to the matter of how to determine whether some regression models as structurally
valid, as good approximations to reality. The point made there is that when iteration is used as
described in the last paragraph, the differences between predictions and observations should be
distributed in a particular way, if the model is really appropriate to the data. Testing of model
structural adequacy and finding “adequate” models is clearly an important matter if one is going
to use models to predict participation and “amount” e.g., rather than getting into massive surveys
to adequate numbers of respondents in small areas so that analysis for these areas can be based
on their own respondents.

Two points can be noted here regarding the hunting model being a reasonable
approximation to reality. Firstly, results presented in TN 29 show that the hunting model is
probably deficient because the effect of supply on participation is not considered in the model.
Yet it is noted in TN29 that the effect of supply on participation in hunting (in fact for all 19
activities for which information was available in the data used in this study) could not be
demonstrated with data on 4,000 people. There it is shown that (1) supply distribution is
important in explaining participation in hunting and fishing and (2) all that was needed to
demonstrate this was a larger data set. In this other technical note the great importance of
considering supply factors, if large biases in estimates is to be avoided, is illustrated. Secondly,
just above a point has been made here of the potential value of using weighted regression. This
regression leads to a test for model structure since if probabilities are correct, probabilities have a



relation to estimated variability.
Finally, from a planning, management and research planning perspective the results

presented here are important. It is not hard to find planning reports or documents prepared for
management estimates are provided with no mention of “uncertainty” in them. There can be
great inefficiency in carrying out research because the proper questions are not asked about how
accurate results needs to be and thereby the question does not arise as to whether projections
could be made by a method like the one described here using secondary analysis rather than
going through laborious, expensive and time consuming primary data collection. How many
times is it that data are collected but estimates do not apply in a certain situation because the
universe for a study was not quite right, because the data are a couple of years out of date etc. ?
How often is a survey carried out without adequate consideration of what reliability is going to
be achieved even when existing surveys could be used to assess expected reliability? A great
waste is getting data because somebody decides a sample of 400, 4000 or 40,000 is the right size
and this is found not to be correct. Budget may dictate sample size but if the sample will not
yield adequate reliability, why bother?

Researchers may often work under the misimpression that planners and managers need
results which are far more accurate than what they actually need. Data on how many people
actually do use facilities may be plotted to justify program expenditures, but in terms of planning
for adequate facilities to begin operation of a park, for the future given new offerings, etc., being
accurate within plus or minus 10% may not even be realistic. Most road designs have a leeway of
about 50%. This allows both for “peaks” in use and for unexpected expansion of use without the
road becoming a problem. Plans to “overbuild” to meet a relatively unlikely level of demand can
be cheap compared to dealing with out growing capability. Anyway, it is not the
researcher’s/analyst’s role to decide on scale but having a proper understanding of what
planners/managers information needs are and seeing that implications of analysis are properly
interpreted is a responsibility of researches/analysts.

In part the points made above relate to using the kind of model presented in designing
good research. A part of designing good research is not carrying out research unless it will
produce useful results and ideally yield them relatively effectively. Being effective can be not
doing a lot of work when rather simple computations are all that are justified. In applied
research, this may mean doing secondary analysis when it will give adequate results for planning
or management decision making. In this regard it is important to note that the kind of results
presented here are important in making a decision as to whether estimates should be made or a
survey should be carried out.

Part of good decisions making can involve considering the level of reliability that can be
achieved given the funds that are available and appropriate to a project must be considered.
Obviously, a $5,600 data collection effort is not a good expenditure for making a decision about
carrying out a $5,000 project. To reiterate a point, if a researcher can elicit a good feel for
necessary reliability for management and planning, she/he can consider what information is
sufficient for decisions making. Furthermore whether millions or thousands of dollars are
involved, the question which must ultimately be asked is, if a survey is necessary, how large is
large enough?

Of particular importance in relation to the last point is that the prediction of more reliable
results by bigger and “better” surveys does not occur beyond a point. There is no point in paying
a high price to collect data to have a model which gives ±1% results for the present when the
concern is 10 years in the future and a prediction of ndv has a high probability (e.g. 10% or 20%)



of being in error by ±10% or more. Given uncertainty in predicting the population, a model that
gives estimates to around ±5% (p=.95) might be reasonable. Based on Equation 10 this less
reliable model would be developed with one twenty-fifth of the data and therefore at a much
lower cost. Of course, if data for the "more accurate" model must be collected to meet some
other need, then the cost picture changes.
CONCLUSION

The results presented in this article show it is not a terribly difficult matter to obtain
estimates of the reliability of participation or “amount” predictions that can be made using
regression models. Whether one is dealing with a main effect model (Equation 1) or one
considers interactions between variables, some modern regression programs give one access to
the covariance matrix that is necessary to make predictions (see article’s appendix).
Nevertheless, given that a very low R2 is attained in a regression, one may find that, except for
estimates for a population much different than the survey population, calculating estimate
variability using the sample mean proportion participating (p) gives good results (i.e., s=(Np(1-
p)/n)1/2 where N is the population “projected to” and n is the sample size). In particular, as
considered in TN 12, when one is not just predicting for a population (e.g., in an area because
survey data yields zero or few cases in the area) but forecasting to a future time, it is important to
remember that Equation 6 applies when population sizes (ndv) can be considered constant. When
forecasting population contributes to variability, one approach to realistic consideration of what
can be expected is to get reliability estimates for different (low, expected and high) values of the
ndv and use these in considering how variable estimates are really likely to be.

Not only must one be concerned about population values (ndv), as already noted several
times, using structurally inadequate models can cause analysis to just be “playing with numbers”.
Model structure should be of particular concern when estimates become heavily dependent on
model parameters (e.g., because one is making estimates for segments of a population for which
model parameters are large).

From a practical perspective being able to make “appropriately” reliability estimates
relates to the researcher being able to determine with the planners, managers or others for whom
she/he is doing research, using the general level of reliability needed for certain purposes. When
data are "needed now" carrying out a survey (or other gathering any primary data) to determine
what the participation level of population is/will be may not be an option because there is no
time. If data are to guide decision making and estimates are to be made, for example, using
models in secondary data, considering estimates likely reliability prior to doing a lot of
modelling work is important to seeing that effort is not wasted. Regarding modelling, there is a
choice to model and then one regarding how sophisticated modelling should be (e.g., ignoring
interaction effects and/or supply factors (TN 29). Regardless, if using the reliability estimation
methods for modelling presented here one finds that acceptably reliable estimates cannot be
expected, it should be accepted that modelling should not occur. Decision should not be made
using estimates that are likely to be misleading. In that regard, it should be recognized that a goal
of research is showing when information is not good enough to use as well as providing
quantitative input to decision making.



APPENDIX: REGRESSION FORMULATION, POPULATION VALUES AND GETTING
THE COVARIANCE MATRIX TO ESTIMATE s FROM 2 REGRESSION
PROGRAMS

The article has mentioned that how a regression is formulated determines the values of ndv
to use in estimating Ê(TA) and s=Var(Ê(TA)). It has also been noted that in 2006 one can obtain
Σβin electronic form from regression programs. This appendix deals briefly with both these
matters.

In considering regression formulations, only two options are considered and only simple
cases of these are introduced. Given that we are considering categorical variables each variable
has 2 or more levels (e.g., see levels in Table 1). This means that for each respondent one can
create dummy variables that have a value of 1 if a person has a level of an attribute and has
another value if the person does not have that attribute. In fact this idea can be extended to
having a given levels of 2 or more variables. For 2 levels of gender and 5 of another variable
there are 10 combinations so one could have 10 indicator variables. The problem with this
approach for model estimation is that knowing e.g. gender=1 means it is not 0. Scheffe (1959)
introduces a constraint matrix, H, into analysis so that one can represent presence or absence of a
level of an attribute or of a combination of levels for several attributes by zeros and ones.
However, someone setting out to use regression in SPSS (1993 see e.g. actual code pp. ) or SAS
Proc Reg (SAS 1990, Ch. 36) is likely going to set up a regression in one of two ways illustrated
in Figures 2 and 3.

In the central part of Figures 2 and 3 one sees columns in which 1 indicates the presence
of an attribute. This central part is called the design matrix while on the left you see the
dependent variable vector/matrix and on the right you see the parameter vector/matrix. In this
regard, the figures given the matrix relation Y=Xβ(Equation 1b is Y=Xβ+ε). The difference
between the figures is that in one you see -1 in the design matrix, X. The first (left) column of the
X matrix is the “General mean” column. In it you see just ones since the general man applies to
everybody. Under income for respondent 1 (associated with y1), you see 1 for income level 1
showing she/he has that level of income. Having that level means you see 0 for level 2. There is
no column for level 3. Rather, for respondent 3 (associated with y3), you see that the respondent
has income level is 3 because ­1 appears for levels 1 and 2. This shows that income is not in
these levels. For regression results the effect of using -1 is that one is making βIncome,3=
­(βIncome,1+βIncome,2).

The only difference between Figure 2 and Figure 3 is that where there are -1 in Figure 2
there are zeros in Figure 3. When -1 is not used then one does not have theβIncome,3=
­(βIncome,1+βIncome,2) relation. This means that plots estimated regression coefficients would not be
like the one in Figure 1. Instead, the regression coefficient for the missing level is 0 and other
coefficients take values consistent with this.

For both figures the really important matter to note is that if a variable has k levels then in
the design matrix only k-1 columns appear for the variable. Again, this is so that “the linear
dependence” that arises e.g. from knowing that a person having 1 for one level of a variable
means they cannot have 1 for another. In a similar way one can have columns for interactions
and use 0/1/-1 for interactions. However, leaving out columns and allocating values 0/1/-1 values
is more involved than for main effects. For example, if one were to extend the Figure 2-3
example to include income by urbanization interaction (3 by 3 levels), one does not just
introduce 9 columns for the 3*3 combinations of levels. Nor does one use 9 minus 1 columns
mimicking what was done with single variables. Readers who do not know what to do should



consult a regression text.
If you want to carry out a regression, and your data has levels of variables, you can e.g.

use the SAS or SPSS programming language to produce data as given in one of the figures. Your
data “table”/array will include the dependent variable as a column and include the columns of the
design matrix other than the general mean. You do not include that column because the
regression program creates it (unless you use a special “no intercept” command to suppress its
creation). Regardless, if you have the columns of the design matrix other than the general mean
column, both SPSS and SAS will produce aΣβmatrix that includes the general mean under the
generic title “intercept”.
Figure 2: A display showing how one can picture the “design” matrix for and dummy variable

structure for a regression in which 1 indicates an attribute applies to a person and 0 that it
does not apply

Income Urbanization Age
Regression
coefficients

Participate
or not (or
amount)

General
mean (1) (2) (1) (2) (1) (2) (3)

y1 1 1 0 0 1 1 0 0 μ
y2 1 0 1 1 0 0 1 0 βIncome,1

y3 1 -1 -1 -1 -1 0 0 1 βIncome,2
y4 1 0 1 1 0 -1 -1 -1 ΒUrbanization,1
y5 = 1 1 0 0 1 0 1 0 βUrbanization,2
y6 1 -1 -1 -1 -1 0 0 1 βAge,1

etc. 1 0 1 0 1 1 0 0 βAge,2
yn-1 1 1 0 1 0 -1 -1 -1 βAge,2
yn 1 -1 -1 -1 -1 0 1 0

Figure 3: A display showing how one can picture the “design” matrix for and dummy variable
structure for a regression in which 1 indicates an attribute applies to a person and -1 that
it does not apply

Income Urbanization Age
Regression
coefficients

Participate
or not (or
amount)

General
mean (1) (2) (1) (2) (1) (2) (3)

1 1 1 0 0 1 1 0 0 μ
1 1 0 1 1 0 0 1 0 βIncome,1
0 1 0 0 0 0 0 0 1 βIncome,2

0 = 1 0 1 1 0 0 0 0 ΒUrbanization,1

0 1 1 0 0 1 0 1 0 βUrbanization,2

0 1 0 0 0 0 0 0 1 βAge,1
1 1 0 1 0 1 1 0 0 βAge,2
0 1 1 0 1 0 0 0 0 βAge,2
1 1 0 0 0 0 0 1 0

As the discussion above has indicated, when you want to compute s=Var(Ê(TA)), it is
important to know the nature of the X in Y=Xβ. This is because when an SPSS or SAS Proc
REG is run, theΣβthat a computer creates is for the coefficients for the “model” specified. In
other words, for Figures 2 and 3 either βIncome,3= ­(βIncome,1+βIncome,2) applies or the coefficient for



the missing level is zero.
If your data are weighted and you use the weight in the regression (use a WEIGHT

statement), the weights are properly incorporated intoΣβby SPSS and SAS regression programs.
Specifically consider using SAS PROC REG and “linear regression” as accessed using the menu
features in SPSS 10 or later. Given that you get data into the form for one of these programs, to
estimate s you face four challenges. One is getting the Σβin a usable electronic form. For SAS
PROC REG in the “PROC” statement you specify “OUTEST={SOME DATA SET NAME}”
and also specify COVOUT. In SPSS10 and above, using the ANALYZE “tab” you can select
Regression and “subselect” Linear. In linear regression you set up your regression and use the
SAVE button to allow you to specify the data set into which you want the information stored that
lets you accessΣβ. To use Σβ, even when you have it in electronic form, is not trivial. Both SPSS
and SAS offer matrix processing options. Your second challenge is using SAS/SPSS
programming and the matrix language to get 1 . You must perform the inverse operation.

To execute the Equation 6 multiplication you need the n matrix. Having it in electronic
form requires further SPSS/SAS programming. If you chose the Figure 2 model setup, then you
need to calculate nvariable,level for the computation by finding the actual population in the variable-
level category, ňvariable,level, and also finding the actual population in the level of the variable that
is excluded. nvariable,level is the difference as expressed in Equation 10. The reason you would be
using the Figure 2 version of regression is so that you can easily get plots like Figure 1. You do
this based on computing the effects associated with missing levels by Equation 11. If you use the
Figure 3 version of regression formulation, then nvariable,level is exactly what seems apparent, the
size of the population in the given level of the variable (e.g. number of people in age group 1 is
nage,1.
Equation 10: nvariable,level =ňvariable,level -ňvariable,level excluded
Equation 11: Effect missing level=-Σ(effects of other levels)

Given that you specify the n matrix/vector, your fourth and final challenge is using the
matrix programming language to actually calculate nnTEVar A

1̂'))(̂(   (Equation 6).
What has been described is not really complicated. If implemented with support of

someone who is good at SPSS/SAS, getting “generic” code going is easy. With generic code,
modifying the code for new cases is trivial when one just changes number of variables and their
levels. If one starts to move from main effect models to more elaborate models, then the biggest
challenge may be learning to correctly program the design matrix (X in Y=Xβ).


